An Efficient LBP-Based Descriptor for Facial Depth Images Applied to Gender Recognition Using RGB-D Face Data

نویسندگان

  • Tri Huynh
  • Rui Min
  • Jean-Luc Dugelay
چکیده

RGB-D is a powerful source of data providing the aligned depth information which has great potentials in improving the performance of various problems in image understanding, while Local Binary Patterns (LBP) have shown excellent results in representing faces. In this paper, we propose a novel efficient LBP-based descriptor, namely Gradient-LBP (G-LBP), specialized to encode the facial depth information inspired by 3DLBP, yet resolves its inherent drawbacks. The proposed descriptor is applied to gender recognition task and shows its superiority to 3DLBP in all the experimental setups on both Kinect and range scanner databases. Furthermore, a weighted combination scheme of the proposed descriptor for depth images and the state-of-the-art LBP for grayscale images applied in gender recognition is proposed and evaluated. The result reinforces the effectiveness of the proposed descriptor in complementing the source of information from the luminous intensity. All the experiments are carried out on both the high quality 3D range scanner database Texas 3DFR and images of lower quality obtained from Kinect EURECOM Kinect Face Dataset to show the consistency of the performance on different sources of RGB-D data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

An RGB-D based image set classification for robust face recognition from Kinect data

The paper proposes a method for robust face recognition from low quality Kinect acquired images which have a wide range of variations in head pose, illumination, facial expressions, sunglass disguise and occlusions by hand. Multiple Kinect images of a person are considered as an image set and face recognition from these images is formulated as an RGB-D image set classification problem. The Kine...

متن کامل

RGB-D Face Recognition System Verification Using Kinect And FRAV3D Databases

This paper deals with a facial recognition system and its verification using the RGB-D data obtained from the Kinect and FRAV3D database. The FRAV3D database contains 106 subjects, which involves approximately one woman after every three men. The Kinect database has17 images per 31 persons. The proposed algorithm computes a descriptor based on the entropy of RGB-D faces along with the saliency ...

متن کامل

Accurate and robust face recognition from RGB-D images with a deep learning approach

Face recognition from RGB-D images utilizes 2 complementary types of image data, i.e. colour and depth images, to achieve more accurate recognition. In this paper, we propose a face recognition system based on deep learning, which can be used to verify and identify a subject from the colour and depth face images captured with a consumer-level RGB-D camera. To recognize faces with colour and dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012